Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 415
Filtrar
1.
ACS Omega ; 9(12): 13509-13521, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559974

RESUMO

With the escalating utilization of plastic products, global attention has been increasingly drawn to environmental pollution and recycling challenges stemming from plastic waste. Against this backdrop, biodegradable plastics have emerged as viable alternatives owing to their sustainability and capacity for biodegradation. Polylactic acid (PLA) presently commands the largest market share among biodegradable plastics, finding extensive application in products such as thin films, medical materials, and biodegradable straws. However, the widespread adoption of PLA is hindered by challenges such as high cost, low recycling rates, and complete degradation to H2O and CO2 in natural conditions. Therefore, it is imperative and time-sensitive to explore solutions for the depolymerization and re/upcycling of PLA waste plastics. This review comprehensively outlines the current landscape of PLA recycling methods, emphasizing the advantages and significance of chemical re/upcycling. The subsequent exploration encompasses recent breakthroughs and technical obstacles inherent in diverse chemical depolymerization methods. Ultimately, this review accentuates the impediments and forthcoming possibilities in the realm of PLA plastics, emphasizing the pursuit of closed-loop recycling and upcycling.

2.
RSC Adv ; 14(15): 10672-10686, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38572345

RESUMO

Photothermal materials have shown great potential for cancer detection and treatment due to their excellent photothermal effects. Circulating tumor cells (CTCs) are tumor cells that are shed from the primary tumor into the blood and metastasize. In contrast to other tumor markers that are free in the blood, CTCs are a collective term for all types of tumor cells present in the peripheral blood, a source of tumor metastasis, and clear evidence of tumor presence. CTCs detection enables early detection, diagnosis and treatment of tumors, and plays an important role in cancer prevention and treatment. This review summarizes the application of various photothermal materials in CTC detection, including gold, carbon, molybdenum, phosphorus, etc. and describes the significance of CTC detection for early tumor diagnosis and tumor prognosis. Focus is also put on how various photothermal materials play their roles in CTCs detection, including CT, imaging and photoacoustic and therapeutic roles. The physicochemical properties, shapes, and photothermal properties of various photothermal materials are discussed to improve the detection sensitivity and efficiency and to reduce the damage to normal cells. These photothermal materials are capable of converting radiant light energy into thermal energy for highly-sensitive CTCs detection and improving their photothermal properties by various methods, and have achieved good results in various experiments. The use of photothermal materials for CTCs detection is becoming more and more widespread and can be of significant help in early cancer screening and later treatment.

3.
J Environ Qual ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38595076

RESUMO

The primary drivers of eutrophication in lakes following the reduction of external nutrient inputs are the release of N and P from sediments. Constructed wetlands play a pivotal role in ameliorating N, P, and other biogenic element levels. However, the presence of large vegetation in these wetlands also substantially contributes to nutrient accumulation in sediments, a phenomenon influenced by seasonal variations. In this study, a typical constructed wetland was selected as the research site. The research aimed to analyze the forms of N and P in sediments during both summer and winter. Simultaneously, a comprehensive pollution assessment and analysis were conducted within the study area. The findings indicate that elevated summer temperatures, together with the presence of wetland vegetation, promote the release of N through the nitrification process. Additionally, seasonal variations exert a significant impact on the distribution of P storage. Furthermore, the role of constructed wetlands in the absorption and release of N and P is primarily controlled by the influence of organic matter on nitrate-nitrogen, nitrite-nitrogen, and available phosphorus, and is also subject to seasonal fluctuations. In summary, under the comprehensive influence of constructed wetlands, vegetation types, and seasons, sediments within the lake generally exhibit a state of mild or moderate pollution. Therefore, targeted measures should be adopted to optimally adjust vegetation types, and human intervention is necessary, involving timely sediment harvesting during the summer to reduce N and P loads, and enhancing sediment adsorption and retention capacity for N and P during the winter.

4.
Int Wound J ; 21(4): e14807, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591163

RESUMO

Skin Cutaneous Melanoma (SKCM) is a form of cancer that originates in the pigment-producing cells, known as melanocytes, of the skin. Delay wound healing is often correlated with the occurrence of and progression of SKCM. In this comprehensive study, we investigated the intricate roles of two important wound healing genes in SKCM, including Matrix Metalloproteinase-2 (MMP2) and Matrix Metalloproteinase-9 (MMP9). Through a multi-faceted approach, we collected clinical samples, conducted molecular experiments, including RT-qPCR, bisulphite sequencing, cell culture, cell Counting Kit-8, colony formation, and wound healing assays. Beside this, we also used various other databases/tools/approaches for additional analysis including, UALCAN, GEPIA, HPA, MEXPRESS, cBioPortal, KM plotter, DrugBank, and molecular docking. Our results revealed a significant up-regulation of MMP2 and MMP9 in SKCM tissues compared to normal counterparts. Moreover, promoter methylation analysis suggested an epigenetic regulatory mechanism. Validations using TCGA datasets and immunohistochemistry emphasized the clinical relevance of MMP2 and MMP9 dysregulation. Functional assays demonstrated their synergistic impact on proliferation and migration in SKCM cells. Furthermore, we identified potential therapeutic candidates, Estradiol and Calcitriol, through drug prediction and molecular docking analyses. These compounds exhibited binding affinities, suggesting their potential as MMP2/MMP9 inhibitors. Overall, our study elucidates the diagnostic, prognostic, and therapeutic implications of MMP2 and MMP9 in SKCM, shedding light on their complex interplay in SKCM occurrence and progression.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz , Simulação de Acoplamento Molecular , Cicatrização/genética , Mutação , Metilação
5.
Vet Microbiol ; 293: 110094, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636175

RESUMO

Infectious bursa disease (IBD) is an acute, highly contactable, lethal, immunosuppressive infectious disease caused by the Infectious bursa disease virus (IBDV). Currently, the emerged novel variant IBDV (nVarIBDV) and the sustainedly prevalent very virulent IBDV (vvIBDV) are the two most prevalent strains of IBDV in China. The antigenic properties of the two prevalent strains differed significantly, which led to the escape of nVarIBDV from the immune protection provided by the existing vvIBDV vaccine. However, the molecular basis of the nVarIBDV immune escape remains unclear. In this study, we demonstrated, for the first time, that residues 252, 254, and 256 in the PDE of VP2 are involved in the immune escape of the emerging nVarIBDV. Firstly, the IFA-mediated antigen-antibody affinity assay showed that PBC and PDE of VP2 could affect the affinity of vvIBDV antiserum to VP2, of which PDE was more significant. The key amino acids of PDE influencing the antigen-antibody affinity were also identified, with G254N being the most significant, followed by V252I and I256V. Then the mutated virus with point or combined mutations was rescued by reverse genetics. it was further demonstrated that mutations of V252I, G254N, and I256V in PDE could individually or collaboratively reduce antigen-antibody affinity and interfere with antiserum neutralization, with G254N being the most significant. This study revealed the reasons for the widespread prevalence of nVarIBDV in immunized chicken flocks and provided innovative ideas for designing novel vaccines that match the antigen of the epidemic strain.

6.
Biosens Bioelectron ; 257: 116171, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636317

RESUMO

The COVID-19 pandemic has highlighted the need for rapid and sensitive detection of SARS-CoV-2. Here, we report an ultrasensitive SARS-CoV-2 immunosensor by integration of an AlGaN/GaN high-electron-mobility transistor (HEMT) and anti-SARS-CoV-2 spike protein antibody. The AlGaN/GaN HEMT immunosensor has demonstrated the capability to detect SARS-CoV-2 spike proteins at an impressively low concentration of 10-22 M. The sensor was also applied to pseudoviruses and SARS-CoV-2 ΔN virions that display the Spike proteins with a single virion particle sensitivity. These features validate the potential of AlGaN/GaN HEMT biosensors for point of care tests targeting SARS-CoV-2. This research not only provides the first HEMT biosensing platform for ultrasensitive and label-free detection of SARS-CoV-2.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38642410

RESUMO

DangGui-KuShen (DK) is a well-known classic traditional Chinese medicine recipe that improves blood circulation, eliminates moisture, and detoxifies, and is frequently used in the treatment of cardiovascular problems. Some protective effects of DK on cardiovascular disease have previously been identified, but its precise mechanism remains unknown. The goal of this study is to combine metabolomics and network pharmacology to investigate DK's protective mechanism in Ischemic Heart Disease(IHD) rat models. A combination of metabolomics and network pharmacology based on UPLC-Q-TOF/MS technology was used in this study to verify the effect of DK on IHD through enzyme-linked immunosorbent assay, HE staining, and electrocardiogram, and it was determined that DK improves the synergistic mechanism of IHD. In total, 22 serum differential metabolites and 26 urine differential metabolites were discovered, with the majority of them involved in phenylalanine, tyrosine, and tryptophan biosynthesis, glycine, serine, and threonine metabolism, arginine and proline metabolism, aminoacyl-tRNA biosynthesis, purine metabolism, and other metabolic pathways. Furthermore, using network pharmacology, a composite target pathway network of DangGui and KuShen for treating IHD was created, which is primarily associated to the tumor necrosis factor (TNF) signaling pathway, P53 signaling, and HIF-1 signaling pathways. The combined research indicated that the NF-B signaling pathway and the HIF-1 signaling pathway are critical in DK treatment of IHD. This study clearly confirms and expands on current knowledge of the synergistic effects of DG and KS in IHD.

8.
JCI Insight ; 9(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646935

RESUMO

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with F508del being the most prevalent mutation. The combination of CFTR modulators (potentiator and correctors) has provided benefit to CF patients carrying the F508del mutation; however, the safety and effectiveness of in utero combination modulator therapy remains unclear. We created a F508del ferret model to test whether ivacaftor/lumacaftor (VX-770/VX-809) therapy can rescue in utero and postnatal pathologies associated with CF. Using primary intestinal organoids and air-liquid interface cultures of airway epithelia, we demonstrate that the F508del mutation in ferret CFTR results in a severe folding and trafficking defect, which can be partially restored by treatment with CFTR modulators. In utero treatment of pregnant jills with ivacaftor/lumacaftor prevented meconium ileus at birth in F508del kits and sustained postnatal treatment of CF offspring improved survival and partially protected from pancreatic insufficiency. Withdrawal of ivacaftor/lumacaftor treatment from juvenile CF ferrets reestablished pancreatic and lung diseases, with altered pulmonary mechanics. These findings suggest that in utero intervention with a combination of CFTR modulators may provide therapeutic benefits to individuals with F508del. This CFTR-F508del ferret model may be useful for testing therapies using clinically translatable endpoints.

9.
Nat Commun ; 15(1): 2668, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531906

RESUMO

International initiatives set ambitious targets for ecological restoration, which is considered a promising greenhouse gas mitigation strategy. Here, we conduct a meta-analysis to quantify the impacts of ecological restoration on greenhouse gas emissions using a dataset compiled from 253 articles. Our findings reveal that forest and grassland restoration increase CH4 uptake by 90.0% and 30.8%, respectively, mainly due to changes in soil properties. Conversely, wetland restoration increases CH4 emissions by 544.4%, primarily attributable to elevated water table depth. Forest and grassland restoration have no significant effect on N2O emissions, while wetland restoration reduces N2O emissions by 68.6%. Wetland restoration enhances net CO2 uptake, and the transition from net CO2 sources to net sinks takes approximately 4 years following restoration. The net ecosystem CO2 exchange of the restored forests decreases with restoration age, and the transition from net CO2 sources to net sinks takes about 3-5 years for afforestation and reforestation sites, and 6-13 years for clear-cutting and post-fire sites. Overall, forest, grassland and wetland restoration decrease the global warming potentials by 327.7%, 157.7% and 62.0% compared with their paired control ecosystems, respectively. Our findings suggest that afforestation, reforestation, rewetting drained wetlands, and restoring degraded grasslands through grazing exclusion, reducing grazing intensity, or converting croplands to grasslands can effectively mitigate greenhouse gas emissions.

10.
J Hazard Mater ; 469: 133965, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38471381

RESUMO

Cadmium (Cd) contamination in agricultural soil has been an elevated concern due to the high health risks associated with the transfer through the soil-food chain, particularly in the case of rice. Recently, there has numerous researches on the use of nanoparticle-loaded materials for heavy metal-polluted soil remediation, resulting in favorable outcomes. However, there has been limited research focus on the field-scale application and recovery. This study was aimed to validate the Cd reduction effect of the nano-FeS loaded lignin hydrogel composites (FHC) in mildly polluted paddies, and to propose a field-scale application method. Hence, a multi-site field experiment was conducted in southern China. After the application for 94-103 days, the FHC exhibited a high integrity and elasticity, with a recovery rate of 91.90%. The single-round remediation led to decreases of 0.42-31.72% in soil Cd content and 1.52-49.11% in grain Cd content. Additionally, this remediation technique did not adversely impact rice production. Consequently, applying FHC in the field was demonstrated to be an innovative, efficient, and promising remediation technology. Simultaneously, a strategy was proposed for reducing Cd levels while cultivating rice in mildly polluted fields using the FHC.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Lignina , Hidrogéis , Poluentes do Solo/análise , Solo
11.
Nanotechnology ; 35(23)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497442

RESUMO

In contrast to lithium-ion batteries, lithium-sulfur batteries have higher theoretical energy density and lower cost, so they would become competitive in the practical application. However, the shuttle effect of polysulfides and slow oxidation-reduction kinetics can degrade their electrochemical performance and cycle life. In this work, we have first developed the porous FeNi Prussian blue cubes as precursors. The calcination in different atmospheres was employed to make precursors convert into common pyrolysis products or novel carbon-based phosphides, and sulfides, labeled as FeNiP/A-C, FeNiP/A-P, and FeNiP/A-S. When these products serve as host materials in the sulfur cathode, the electrochemical performance of lithium-sulfur batteries is in the order of S@FeNiP/A-P > S@FeNiP/A-S > S@FeNiP/A-C. Specifically, the initial discharge capacity of S@FeNiP/A-P can reach 679.1 mAh g-1at 1 C, and the capacity would maintain 594.6 mAh g-1after 300 cycles. That is because the combination of carbon-based porous structure and numerous well-dispersed Ni2P/Fe2P active sites contribute FeNiP/A-P to obtain larger lithium-ion diffusion, lower resistance, stronger chemisorption, and more excellent catalytic effect than other samples. This work may deliver that metal-organic framework-derived carbon-based phosphides are more suitable to serve as sulfur hosts than carbon-based sulfides or common pyrolysis products for enhancing Li-S batteries' performance.

12.
Front Oncol ; 14: 1320020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444677

RESUMO

Background: Colorectal cancer (CRC) is considered the most prevalent synchronous malignancy in patients with gastric cancer. This large retrospective study aims to clarify correlations between gastric histopathology stages and risks of specific colorectal neoplasms, to optimize screening and reduce preventable CRC. Methods: Clinical data of 36,708 patients undergoing gastroscopy and colonoscopy from 2005-2022 were retrospectively analyzed. Correlations between gastric and colorectal histopathology were assessed by multivariate analysis. Outcomes of interest included non-adenomatous polyps (NAP), conventional adenomas (CAs), serrated polyps (SPs), and CRC. Statistical analysis used R version 4.0.4. Results: Older age (≥50 years) and Helicobacter pylori infection (HPI) were associated with increased risks of conventional adenomas (CAs), serrated polyps (SPs), non-adenomatous polyps (NAP), and colorectal cancer (CRC). Moderate to severe intestinal metaplasia specifically increased risks of NAP and CAs by 1.17-fold (95% CI 1.05-1.3) and 1.19-fold (95% CI 1.09-1.31), respectively. For CRC risk, low-grade intraepithelial neoplasia increased risk by 1.41-fold (95% CI 1.08-1.84), while high-grade intraepithelial neoplasia (OR 3.76, 95% CI 2.25-6.29) and gastric cancer (OR 4.81, 95% CI 3.25-7.09) showed strong associations. More advanced gastric pathology was correlated with progressively higher risks of CRC. Conclusion: Precancerous gastric conditions are associated with increased colorectal neoplasm risk. Our findings can inform screening guidelines to target high-risk subgroups, advancing colorectal cancer prevention and reducing disease burden.

13.
Diabetol Metab Syndr ; 16(1): 66, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481313

RESUMO

BACKGROUND: This study aimed to reveal the association between the gut microbiota (GM) and six diabetic complications: diabetic hypoglycemia; ketoacidosis; nephropathy; neuropathy; retinopathy; and Charcot's foot. METHODS: GM data were obtained from the MiBioGen consortium and Dutch Microbiome Project while data on the six diabetic complications were obtained from the FinnGen consortium. Two-sample Mendelian randomization (TSMR) was performed to explore the association between GM and the common diabetic complications. Inverse MR analysis was conducted to examine the effect of diabetic complications on the identified GM. Sensitivity tests were conducted to validate the stability of the results. Finally, multivariate MR (MVMR) was performed to determine whether GM had a direct influence on the diabetic complications. RESULTS: After multiple corrections, the inverse variance weighted (IVW) results predicted 61 suggestive markers between GM and six diabetic complications. In particular, the IVW results revealed that the Bacteroidia class and Bacteroidales order were positively associated with diabetic hypoglycemia while the Verrucomicrobiae class and Verrucomicrobiales order were positively associated with diabetic nephropathy. Based on the replication analysis, these results were identified to be stable. MVMR showed that the results remained stable after accounting for traditional risk factors. CONCLUSION: Extensive causal associations were found between GM and diabetic complications, which may provide new insights into the mechanisms of microbiome-mediated complications of diabetes.

14.
Foods ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397496

RESUMO

A long-term use of chemical drugs cannot cure type II diabetes mellitus (T2DM) and their numerous toxic side effects can be harmful to human health. In recent years, probiotics have emerged as a natural resource to replace chemical drugs in alleviating many human ailments. Healthy children's intestines have a lot of colonized Lactobacilli and Bifidobacterium, and these beneficial bacteria can help promote overall health. The objective of this study was to isolate potential antidiabetic probiotic strains from healthy children and evaluate their application prospects. Firstly, Lactobacillus and Bifidobacterium strains were isolated from healthy children's feces and identified by the pheS or clpC genes with their respective 16S rRNA genes. Then, hydrophobicity, artificial gastrointestinal fluid tolerance, α-Glucosidase and Dipeptidyl peptidase IV (DPP-IV) inhibitory activities of isolated strains were determined, and antioxidant activities and promoting secretion of GLP-1 in STC-1 cells of candidate strains were tested. Results showed that 6 strains of Lactobacillus and Bifidobacterium were obtained from the feces of healthy children aged 3 years, respectively, including Lacticaseibacillus paracasei L-21 and L-25, Levilactobacillus brevis L-16, Lentilactobacillus buchneri L-9, Lactiplantibacillus plantarum L-8 and L-3, Bifidobacterium bifidum 11-1 and B-84, Bifidobacterium longum subsp. longum 6-1, 6-2, B42 and B53. The hydrophobicity and auto-aggregation levels of all these strains were higher than 30% and 50%, respectively, and the decrease in the number of colonies of all strains in the artificial gastrointestinal fluid was less than 2 log CFU/mL. Strains L-3, L-8, L-9, L-21, 6-1, 11-1, B53 and B84 were selected based on their high α-glucosidase inhibitory activity and DPP-IV inhibitory activity, and results of the antioxidant capacity assay showed that the remaining strains all had intense comprehensive antioxidant activity. Additionally, Lacticaseibacillus paracasei L-21 and Bifidobacterium longum subsp. longum B-53 had the most substantial prompting effect on GLP-1 secretion in the STC-1 cell line. These results indicated that Lacticaseibacillus paracasei L-21 and Bifidobacterium longum subsp. longum B-53 could be used as a potential antidiabetic strain; thus, its application as a food supplement and drug ingredient could be recommended after in vivo mitigation of type II diabetes test.

15.
Ultrason Sonochem ; 104: 106827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412678

RESUMO

It is of great significance to prepare liners with excellent inhibition of energetic plasticizer migration and gas barrier properties. Here, we have successfully prepared magnetic iron oxide decorated reduced-graphene-oxide nanosheets (MRGO) by using ultrasound-assisted method. The obtained MRGO nanosheet-fillers were filled into hydroxyl-terminated polybutadiene (HTPB) which was exposed to a magnetic field (200 mT) to achieve ordered orientation of MRGO in the HTPB matrix (Ordered MRGO/HTPB). The laser confocal microscopy demonstrates that MRGO exhibit ordered orientation structure in HTPB matrix with good dispersion, which renders the HTPB composite liners exhibiting high gas and plasticizer barrier capability, with a reduction of 18.9 % in water vapor permeability and a decrease of 14.1 % in dibutyl phthalate (DBP) migration equilibrium concentration as compared with those of random MRGO embedded HTPB composite liners (Random MRGO/HTPB). Moreover, a theoretical model accounting for such enhanced gas/plasticizer barrier performance of HTPB due to the implantation of order aligned MRGO was established, which shows that the effective diffusion pathways of plasticizer/gas for liner penetration would be significantly enhanced when the MRGO nanosheets are oriented within the HTPB matrix. This work provides an effective and facile strategy toward the design and development of composite liners with high plasticizer/gas barrier performance for industrial applications.

16.
RSC Adv ; 14(5): 3122-3134, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38249670

RESUMO

Bacterial infections from chronic wounds affect about 175 million people each year and are a significant clinical problem. Through the integration of photodynamic therapy (PDT) and chemotherapy, a new photosensitizer consisting of ammonium salt N,N-bis-(2-hydroxyethyl)-N-(6-(4-(10,15,20-trimesitylporphyrin-5-yl) phenoxy) hexane)-N-methanaminium bromide, TMP(+) was successfully synthesized with a total reaction yield of 10%. The novel photosensitizer consists of two parts, a porphyrin photosensitizer part and a quaternary ammonium salt part, to achieve the synergistic effect of photodynamic and chemical antibacterial activity. With the increase of TMP(+) concentration, the diameter of the PCT fiber membranes (POL/COL/TMP(+); POL, polycaprolactone; COL, collagen) gradually increased, which was caused by the charge of the quaternary ammonium salt. At the same time, the antibacterial properties were gradually improved. We finally selected the PCT 0.5% group for the antibacterial experiment, with excellent performance in fiber uniformity, hydrophobicity and biosafety. The antibacterial experiment showed that the modified porphyrin TMP(+) had a better antibacterial effect than others. In vivo chronic wound healing experiments proved that the antibacterial and anti-inflammatory effect of the PCTL group was the best, further confirmed by H&E histological analysis, immunofluorescence and immunohistochemistry mechanism experiments. This research lays the foundation for the manufacture of novel molecules that combine chemical and photodynamic strategies.

17.
Chem Commun (Camb) ; 60(14): 1924-1927, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38265054

RESUMO

Enantiopure α-substituted phosphonic acids are widely utilized as drugs, pesticides, and ligands. Despite numerous synthetic approaches having been investigated, precise construction of P-adjacent chiral tertiary carbon centres by the employment of recoverable chiral auxiliaries is traditional and still one of the most reliable and practical synthetic methodologies so far. Herein, we present a highly diastereoselective synthesis of α-substituted phosphonates via the unique CAMDOL-derived P-substrates by an efficient sequential deprotonation with LiHMDS and alkylation/arylation with RI. A wide range of 30 structurally diverse α-substituted phosphonate products, including the well-known P-analogues of naproxen and ibuprofen, were thus afforded conveniently in up to 92% yields and 99 : 1 diastereomeric ratios. The related chiral phosphonic acid could be easily obtained by simple acidic hydrolysis with fully recovered auxiliary. This CAMDOL-enabled asymmetric synthetic protocol exhibits comparative advantages over known chiral-induction methods with easy accessibility and compatibility of furnishing a variety of C-stereogenic centres in the proximity of the phosphorus atom, including some rare examples.

18.
Allergy Asthma Immunol Res ; 16(1): 55-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38262391

RESUMO

PURPOSE: Eosinophilic asthma (EA) and non-asthmatic eosinophilic bronchitis (EB) share similar eosinophilic airway inflammation. Unlike EA, EB did not present airway hyperresponsiveness or airflow obstruction. We aimed to compare the mechanism underlying the different manifestations between EA and EB via sputum transcriptomics analysis. METHODS: Induced-sputum cells from newly physician-diagnosed EA, EB patients, and healthy controls (HCs) were collected for RNA sequencing. RESULTS: Bulk RNA sequencing was performed using sputum cells from patients with EA (n = 18), EB (n = 15) and HCs (n = 28). Principal component analysis revealed similar gene expression patterns in EA and EB. The most differentially expressed genes in EB compared with HC were also shared by EA, including IL4, IL5 IL13, CLC, CPA3, and DNASE1L3. However, gene set enrichment analysis showed that the signatures regulating macrophage activation were enriched in EA compared to EB. Sputum cells were profiled using single-cell RNA sequencing. FABP4+ macrophages, SPP1+ macrophages, FCN1+ macrophages, dendritic cells, T cells, B cells, mast cells, and epithelial cells were identified based on gene expression profiling. Analysis of cell-cell communication revealed that interactions between FCN1+ macrophages and other cells were higher in EA than in EB. A wealth of transforming growth factor beta (TGF-ß) and vascular endothelial growth factor (VEGF) interactions between FCN1+ macrophages and other cells have been shown in EA. The gene expression levels of EREG, TGFBI, and VEGFA in FCN1+ macrophages of EA were significantly higher than those of EB. Furthermore, signatures associated with the response to TGF-ß, cellular response to VEGF stimulus and developmental cell growth were enriched in FCN1+ macrophages of EA compared to those of EB. CONCLUSIONS: FCN1+ macrophage activation associated with airway remodeling processes was upregulated in EA compared to that in EB, which may contribute to airway hyperresponsiveness and airflow obstruction.

19.
mBio ; 15(3): e0343323, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289089

RESUMO

Viruses have evolved intricate mechanisms to evade host antiviral responses and exploit cellular resources by manipulating the expression profile of host genes. During infection, viruses encode proteins with shutoff activity to globally inhibit host protein synthesis, which is an effective strategy for immune evasion. In this study, compelling evidence shows that infectious bursal disease virus (IBDV) infection triggers the suppression of host protein synthesis. Furthermore, using both in vitro and in vivo viral infection models, we have identified that IBDV specifically impedes the transcription of host genes via the shutoff activity of viral VP5, simultaneously conferring advantages to IBDV infection in these circumstances. The proposed mechanism suggests that VP5 competitively binds to RanBP1, disrupting the RanGDP/GTP gradient. This disruption interferes with cellular nucleocytoplasmic transport, impairing the nuclear import of proteins bearing nuclear localization signals. The nuclear transport of pivotal transcriptional regulatory factors, such as p65 and IFN regulatory factor 7, is also compromised, leading to the inhibition of pro-inflammatory cytokines and interferon expression. This newly discovered strategy employed by IBDV enables them to manipulate host gene expression, providing novel insights into how viruses evade host immune responses and establish infections.IMPORTANCEViruses manipulate host processes at various levels to regulate or evade both innate and adaptive immune responses, promoting self-survival and efficient transmission. The "host shutoff," a global suppression of host gene expression mediated by various viruses, is considered a critical mechanism for evading immunity. In this study, we have validated the presence of host shutoff during infectious bursal disease virus (IBDV) infection and additionally uncovered that the viral protein VP5 plays a pivotal role in inhibiting the overall synthesis of host proteins, including cytokines, through a transcription-dependent pathway. VP5 competitively binds with RanBP1, leading to disruption of the Ran protein cycle and consequently interfering with nucleocytoplasmic transport, which ultimately results in the suppression of host gene transcription. These findings unveil a novel strategy employed by IBDV to evade host innate immunity and rapidly establish infection. This study also suggests a novel supplement to understanding the pathway through which viruses inhibit host protein synthesis.


Assuntos
Vírus da Doença Infecciosa da Bursa , Animais , Vírus da Doença Infecciosa da Bursa/genética , Replicação Viral , Imunidade Inata , Evasão da Resposta Imune , Citocinas , Galinhas
20.
Toxics ; 12(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38251027

RESUMO

Argillaceous limestone (AL) is comprised of carbonate minerals and clay minerals and is widely distributed throughout the Earth's crust. However, owing to its low surface area and poorly active sites, AL has been largely neglected. Herein, manganic manganous oxide (Mn3O4) was used to modify AL by an in-situ deposition strategy through manganese chloride and alkali stepwise treatment to improve the surface area of AL and enable its utilization as an efficient adsorbent for heavy metals removal. The surface area and cation exchange capacity (CEC) were enhanced from 3.49 to 24.5 m2/g and 5.87 to 31.5 cmoL(+)/kg with modification, respectively. The maximum adsorption capacities of lead (Pb2+), copper (Cu2+), and nickel (Ni2+) ions on Mn3O4-modified argillaceous limestone (Mn3O4-AL) in mono-metal systems were 148.73, 41.30, and 60.87 mg/g, respectively. In addition, the adsorption selectivity in multi-metal systems was Pb2+ > Cu2+ > Ni2+ in order. The adsorption process conforms to the pseudo-second-order model. In the multi-metal system, the adsorption reaches equilibrium at about 360 min. The adsorption mechanisms may involve ion exchange, precipitation, electrostatic interaction, and complexation by hydroxyl groups. These results demonstrate that Mn3O4 modification realized argillaceous limestone resourcization as an ideal adsorbent. Mn3O4-modified argillaceous limestone was promising for heavy metal-polluted water and soil treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...